PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000

Turbulent crossed fluxes in incompressible flows
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We show in the framework of the stochastic calculus the existence of turbulent crossed fluxes in incom-
pressible flows. Physically, these fluxes are related to the dependence of the phenomenological coefficients on
the temperature and concentration variables.

PACS numbes): 47.27.Qb, 05.70.Ln

Two different approaches proposing the existence of tur- k=k(T,ny), &i=«ki(T,n). (3)
bulent crossed fluxes have been presented in the literature. In
one of the approaches, which follows the thermodynamicraking into account this property we are ready to show the
analogy, these fluxes have been obtained for any type of flowxistence of turbulent crossed fluxes in incompressible flows.
whose energy distribution can be approximated by arhe simplest mathematical form to derive this result is to
Maxwell-type distribution[1]. In the other approach, based consider perturbations of a reference state. This procedure is
on the stochastic calculus, the effect is only present in comgimilar to the scenario considered in RP4] to study the
pressible flowg2-5]|. turbulent crossed effects in compressible flows with chemi-
We shall show in this Brief Report that in the stochasticcal reactions and phase transitions, in which a homogeneous

approach also it is possible to obtain turbulent crossed fluxegquilibrium is considered as the reference state. We denote
for incompressible flows. This result shows that the com+he values of the variables in the reference state by the su-
pressibility of the flow[2,3,5, the chemical reactions, and perscript 0, i.e.T?, etc. The next step is to study deviations
the phase transitiong}] are not the only physical mecha- from this state. Linearizing Eqél) and(2) in the vicinity of
nisms able to produce turbulent crossed fluxes. the reference state we obtain the system of equations ruling

A |r|l| orde_rdto pre§etnt thf]?c analySISd in tthil sblmple_st way We&he behavior of small p(()arturbations. We introduce theonota—
shall consider a mixture of gases advected by an incompresgen T— 10+ 7% n =0t n* g0 (% S o
ible turbulent flow. We suppose that the gases are chemicallti(_ogyc TZT A+ m=nikny, v=viEd, and vi=v,
nonreacting and there are no phase transitions. The equatiops..'
for the temperaturd and number density; of admixtures '
are

. First, we need to consider the linearized form of Eq.

JK JK
k(T =r(TOND) +| o= | (T=TO)+ X —) (nj—nf)
(9T > (9T 0 ] ﬁnj 0 J
E-F\;)'VT:KAT (1)
= x4+ K?—T*-i—E K?nik (4
and ]
ang . - and
St Vi Vni=kidng, )

- : e Ki(T,n) =~ i (T%nP) + %) (T-T9

whereV is the turbulent fluid velocity fieldy; the random aT/,

velocity field of the admixturess the coefficient of molecu-

lar thermal conductivity, and; the coefficient of molecular +> ( i) (n;—n9

diffusion of admixtures. In these equations, as usual on many ] 0 !

occasions, we have neglected the effects associated with the

termsV«-VT andV ;- Vn,, which we suppose are small. =+ kT4 KOnF 5)
The turbulent velocity of the gaseous admixture coincides ]

with that of the surrounding fluif4,5]. Then, if the turbulent

velocity field of the fluid is incompressibl& -v=0, the tur- ~Where we have used an obvious notation.

bulent velocity fields of the gaseous admixtures will be too, USing these expressions, the equations for the perturba-
¥.7.=0 tions of the reference state are
=0.

A fundamental property of the phenomenological coeffi- .
cientsk and «; is their dependence on the fundamental vari- al
ables. As is well known the values of these coefficients vary dt
with the temperature. Moreover, if we modify the concentra- (6)
tions of the admixtures the coefficients show important
changes. Thus mathematically we have and

+V0VT* + 0% VTO= kOAT* + k3 T*+ > 0}
J

1063-651X/2000/6@)/2111(3)/$15.00 PRE 61 2111 ©2000 The American Physical Society



2112 BRIEF REPORTS PRE 61

L PR . We have used the notatidd® =(n*). The terms¢ contain
. PV VN O Vni= kAT ki T +2 kint, the second term in the left-hand sidies) and the second and
! @ third terms in the right-hand sidéhs) of Eq. (9). These
terms represent physical processes that are not relevant for
where our purposes and will not be considered explicitly.
From Egs.(10) and (11) we can easily derive the exis-
KE= KQATO, KJ* = K?ATO, tence of turbulent crossed effects in this type of problems. In

Eq. (10) the termB]VN¥* can be interpreted as a turbulent
Kir=kANY, Kkl =xkjAnf. (8)  analog of the Dufour effect; it describes the turbulent trans-
port of heat due to the number density gradients of the ad-
In order to extract information from these equations we StUd¥nixtures. On the other hand. the teEﬁaWT*} is the turbu-
the large-scale dynamics and average Efsand (7) over  |ont analog of the Soret effect and represents the turbulent

an ensemble of random velocity fluctuations. A similar ex-gttsion induced by the presence of thermal gradients.
plicit calculation was presented in R¢#]. We note that, This result shows the existence of turbulent crossed ef-

analytically, our Eqs(6) and(7) are equivalent to EGS) of  octs in the case of incompressible flows also and in the

Ref. [4]. Indeed, the termscrT*+ 3« nf and «5T*  gpsence of chemical reactions and phase transitions. With

+3jxinf are equivalent tdPga”. On the other hand, the this result we show that we can have turbulent crossed ef-

termsG* - VT° and ar ~ﬁn? do not contain any dependence fects in any type of flow. We have also identified the physi-

onT* orn¥, just like the terml"®*. Then Eq.(6) of Ref.[4]  cal mechanism behind this effect, namely the variation of the

can be translated to our problem with obvious modificationsphenomenological coefficients with the temperature and the

concentration of the mixtures.

VN g A B app 20 Let us consider now the dependence of the strength of the
7+V'(UBA )=V (HVA?) +QpA"=V-J% (9 effect on the different variables. To estimate the order of

magnitude of the relevant terms we introduce the dimension-

where A“=(a”) is the mean value of the variabla® less form of the equations. Let us analyze, for instance, the

=(T*.n%,...), U4=V4+0,QV} where we use the nota- crossed term in Eq10), a(T*)/dt=V-BJVN} +---, with

tion VA=V,8,, with V;=V;+;, V;=(V;), and, can be BiT:M(ﬁKlﬁni)oAT()(T_l]iUi) and p=mn[l-7, — 7% In(r,

obtained as in Ref4], but with ., the relaxation time re- +R€%)] [4]. Now, 7, is the relaxation time of the process

lated to chemical processes or phase transitions, replaced E9nsidered in this work that replaces the relaxation time

an appropriate relaxation time for our problem. As explainedPf the chemical reactions,, = 7, /7o, andry=1o/ug With I,

in Ref. [4] this relaxation time can be obtained by calculatingthe maximum scale of turbulent fluid motions ang the

the trace of the tens@%. The components of this tensor in characteristic turbulent fluid velocity in the scalg Re, is

our case ar@1=«*, Q' =«*, Qr=«%, Q}=Kﬁ , where Re,=min(Re,Pg with Re=Iouy/» the Reynolds number

we denote byT the label referring to the temperature and by the kinematic viscosity, and Pelouo/«; the Peclet number.

i those corresponding to the different components. The rediinally, we haves=(q—1)/(3—q) with g=2p—1 andp

of the terms in Eq(9) are H§=(5§+MQC;)D/§+ K;g with the exponent of the _spectrum of the klnet]c turbulent energy

K= KoBap Dg:<ragag>, - the momentum relaxation of thehflwdr.] By scallnlg Ignic;th, v;lqcny, tlmeh, tﬁmpe;ature,

time of the random velocity fieldi, and u a parameter that and the phenomenological coefficients with the reference

3 .
can be calculated just like the paramejenf Ref. [4] but valueslo, Uo, lo/Uo, xv/agly (with a the thermal expan-

with the change of the characteristic relaxation time of the>ion coefficient ang the acceleration of the gravityand v
. e Sk S0 we obtain the dimensionless form of the equation:
process. Finally, we have J*=(—(7G0*-VT"),

o

—<rﬁlﬁf-ﬁn2>,...). AT
Using all these expressions we obtain the following equa- 2% —Re 1[1— 7, — 72 In(7, +Re, 5]
tions for the mean fields: dty
8<T*> _v.| BT T+ +z BTON* | + 10 ><v5)a\' 7'ra((3’Ka/07ni)0AaTg<7'zall:l)ialjia>v_)aNi* teee
ot -V T < > ; i j d)T ( ) (13)
and In this equation,a indicates that the variables are now di-
AN mensionless(note thatr, is already dimensionlessThe
i _g i G/ IO N term Re! tends to diminish the intensity of the effect for
—=V. + VN | + o i
ot v (BTV<T ) 2 BiVNi ¢ (1) high Reynolds number flows. However, the rest of the terms
in the rhs of the first line of Eq13) (those depending on, )
with tend to increase the intensity of the effect for latge If we
. N consider a problem whose geometric configuration is fixed
Br=(1+pux7)(r00)+«, Bj=puxi (70, (1, constant and with 7, approximately constant, the varia-
' . tion of Re andr, is given byu,. For high Reynolds num-
Bl = wkig(rla)y, B}=(5ij+,uxﬁ)(rﬁjljj>+xi Sij - bers,uq is very large, makingr, also very large. In these

12 conditions 7, Re’! will be approximately constant, but
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Re 72 In(r, + Re,®) will increase with the growth ofi,. ~ nomenological coefficients witfi and/orn; is large. More-
Thus, in this particular situation, the strength of the effectOVver, we mgst COhSId%I’ experimental situations with Olarge
increases for high Reynolds numbers. This conclusion agre&@lues ofAT” and/orAn;. We can have large values AfT
with the results obtained for the dependence of the turbulerf! turbulent Rayleigh-Beard convection with large external
Dufour effect on the Reynolds number derived in Réf| gradients of tempoerature. On the other hand, we can obtain
(note that the ratio of increase of the effect with the Reynolddarge values ofAn;” by placing a source of one of the com-
number obtained in Refd] is different because of the dif- Ponents of the mixture in the flow. Other potentially interest-
ferent approach used for the evaluajioRor other situations N9 _Situations occur in the proximity of wall transitions,
we must consider the variations 6§ and/or 7, , and the \Where strong variations of temperature and concentration are
rm»
evaluation is much more difficult. Finally, note that the pres_observed.

; . . Finally, we note that in the case of the incompressible
ence of a dependence of the intensity on In(Re typical of flows here considered a turbulent analog of the Onsager re-

turbulent crossed fliuxe[$2.—4]. lations can be obtained, as in RES] for compressible flows.
The above considerations suggest some comments on ﬂl}eis clear from the expressions f(B,iT and BiT that the tur-

type of scenarios where crossed effepts in_ incompressibl ulent crossed coefficients are given (aid) and( rGd,)
flows could be relevant. These considerations show th spectively, just as in the case of compressible fllﬁle]s
whenl, and. can be considered approximately constant theI'hen, remef’nbering as stressed at the beginning of this note

intensity of the effect grows with the Reynolds number'that the turbulent velocity of the gaseous admixture coin-

Thus, very high Reynolds number flows are potential frame'c:ides with that of the surrounding fluid, we have that the two
works to observe the effects. However, other factors must b

Ken i As sh in EA3 dth val furbulent crossed coefficients are equal; a turbulent analog of
@ enllnto account. As shown in E(L3) (and the equivalent the Onsager relations is also valid for incompressible flows.
equation for the Soret effecthe strength of the effect de-

pends on {«x/dn)), (dxildT), AT®, and An°. When This work has been partially supported by the Spanish

these variables are large the intensity of the effect increaseMinistry of Education and Science under Contract No.
We must use mixtures for which the variation of the phe-PB96.0451.
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