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Turbulent crossed fluxes in incompressible flows
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~Received 23 August 1999!

We show in the framework of the stochastic calculus the existence of turbulent crossed fluxes in incom-
pressible flows. Physically, these fluxes are related to the dependence of the phenomenological coefficients on
the temperature and concentration variables.

PACS number~s!: 47.27.Qb, 05.70.Ln
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Two different approaches proposing the existence of
bulent crossed fluxes have been presented in the literatur
one of the approaches, which follows the thermodynam
analogy, these fluxes have been obtained for any type of
whose energy distribution can be approximated by
Maxwell-type distribution@1#. In the other approach, base
on the stochastic calculus, the effect is only present in co
pressible flows@2–5#.

We shall show in this Brief Report that in the stochas
approach also it is possible to obtain turbulent crossed flu
for incompressible flows. This result shows that the co
pressibility of the flow@2,3,5#, the chemical reactions, an
the phase transitions@4# are not the only physical mecha
nisms able to produce turbulent crossed fluxes.

In order to present the analysis in the simplest way
shall consider a mixture of gases advected by an incompr
ible turbulent flow. We suppose that the gases are chemic
nonreacting and there are no phase transitions. The equa
for the temperatureT and number densityni of admixtures
are

]T

]t
1vW •¹W T5kDT ~1!

and

]ni

]t
1vW i•¹W ni5k iDni , ~2!

wherevW is the turbulent fluid velocity field,vW i the random
velocity field of the admixtures,k the coefficient of molecu-
lar thermal conductivity, andk i the coefficient of molecular
diffusion of admixtures. In these equations, as usual on m
occasions, we have neglected the effects associated wit
terms¹W k•¹W T and¹W k i•¹W ni , which we suppose are small

The turbulent velocity of the gaseous admixture coincid
with that of the surrounding fluid@4,5#. Then, if the turbulent
velocity field of the fluid is incompressible,¹W •vW 50, the tur-
bulent velocity fields of the gaseous admixtures will be to
¹W •vW i50.

A fundamental property of the phenomenological coe
cientsk andk i is their dependence on the fundamental va
ables. As is well known the values of these coefficients v
with the temperature. Moreover, if we modify the concent
tions of the admixtures the coefficients show importa
changes. Thus mathematically we have
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k5k~T,nj !, k i5k i~T,nj !. ~3!

Taking into account this property we are ready to show
existence of turbulent crossed fluxes in incompressible flo
The simplest mathematical form to derive this result is
consider perturbations of a reference state. This procedu
similar to the scenario considered in Ref.@4# to study the
turbulent crossed effects in compressible flows with che
cal reactions and phase transitions, in which a homogene
equilibrium is considered as the reference state. We de
the values of the variables in the reference state by the
perscript 0, i.e.,T0, etc. The next step is to study deviation
from this state. Linearizing Eqs.~1! and~2! in the vicinity of
the reference state we obtain the system of equations ru
the behavior of small perturbations. We introduce the no
tion T5T01T* , ni5ni

01ni* , vW 5vW 01uW * , and vW i5vW i
0

1uW i* . First, we need to consider the linearized form of E
~3!:

k~T,nj !'k~T0,nj
0!1S ]k

]TD
0

~T2T0!1(
j

S ]k

]nj
D

0

~nj2nj
0!

5k01kT
0T* 1(

j
k j

0nj* ~4!

and

k i~T,nj !'k i~T0,nj
0!1S ]k i

]T D
0

~T2T0!

1(
j

S ]k i

]nj
D

0

~nj2nj
0!

5k i
01k iT

0 T* 1(
j

k i j
0 nj* , ~5!

where we have used an obvious notation.
Using these expressions, the equations for the pertu

tions of the reference state are

]T*

]t
1vW 0

•¹W T* 1uW * •¹W T05k0DT* 1kT* T* 1(
j

k j* nj*

~6!

and
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]ni*

]t
1vW i

0
•¹W ni* 1uW i* •¹W ni

05k i
0Dni* 1k iT* T* 1(

j
k i j* nj* ,

~7!

where

kT* 5kT
0DT0, k j* 5k j

0DT0,

k iT* 5k iT
0 Dni

0, k i j* 5k i j
0 Dni

0. ~8!

In order to extract information from these equations we stu
the large-scale dynamics and average Eqs.~6! and ~7! over
an ensemble of random velocity fluctuations. A similar e
plicit calculation was presented in Ref.@4#. We note that,
analytically, our Eqs.~6! and~7! are equivalent to Eq.~5! of
Ref. @4#. Indeed, the termskT* T* 1( jk j* nj* and k iT* T*
1( jk i j* nj* are equivalent toPb

aab. On the other hand, the

termsuW * •¹W T0 anduW i* •¹W ni
0 do not contain any dependenc

on T* or ni* , just like the termGa. Then Eq.~6! of Ref. @4#
can be translated to our problem with obvious modificatio

]Aa

]t
1¹W •~UW b

aAb!5¹W •~Hb
a¹W Ab!1Qb

aAb2¹•JWa, ~9!

where Aa5^aa& is the mean value of the variableaa

5(T* ,n1* ,...), UW b
a5VW b

a1s* Qg
aVW b

g where we use the nota

tion vW a
b5vW adab with vW i5VW i1uW i , VW i5^vW i&, ands* can be

obtained as in Ref.@4#, but with tc , the relaxation time re-
lated to chemical processes or phase transitions, replace
an appropriate relaxation time for our problem. As explain
in Ref. @4# this relaxation time can be obtained by calculati
the trace of the tensorQb

a . The components of this tensor i
our case areQT

T5kT* , Qi
T5k i* , QT

i 5k iT* , Qj
i 5k i j* , where

we denote byT the label referring to the temperature and
i those corresponding to the different components. The
of the terms in Eq.~9! are Hb

a5(db
a1mQg

a)Db
g1kb

ad with
kb

a5kadab , Db
a5^tuW g

auW b
g&, t the momentum relaxation

time of the random velocity fielduW , andm a parameter tha
can be calculated just like the parameterx of Ref. @4# but
with the change of the characteristic relaxation time of
process. Finally, we have JWa5(2^tuW uW * •¹W T0&,
2^tuW 1uW 1* •¹W n1

0&, . . . ).
Using all these expressions we obtain the following eq

tions for the mean fields:

]^T* &
]t

5¹W •S BT
T¹W ^T* &1(

j
Bj

T¹W Nj* D 1fT ~10!

and

]Ni*

]t
5¹W •S BT

i ¹W ^T* &1(
j

Bj
i ¹W Nj* D 1f i ~11!

with

BT
T5~11mkT* !^tuW uW &1k, Bi

T5mk i* ^tuW iuW i&,

BT
i 5mk iT* ^tuW uW &, Bj

i 5~d i j 1mk i j* !^tuW juW j&1k id i j .
~12!
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We have used the notationNi* 5^ni* &. The termsf contain
the second term in the left-hand side~lhs! and the second and
third terms in the right-hand side~rhs! of Eq. ~9!. These
terms represent physical processes that are not relevan
our purposes and will not be considered explicitly.

From Eqs.~10! and ~11! we can easily derive the exis
tence of turbulent crossed effects in this type of problems
Eq. ~10! the termBi

T¹W Ni* can be interpreted as a turbule
analog of the Dufour effect; it describes the turbulent tra
port of heat due to the number density gradients of the
mixtures. On the other hand, the termBT

i ¹W ^T* & is the turbu-
lent analog of the Soret effect and represents the turbu
diffusion induced by the presence of thermal gradients.

This result shows the existence of turbulent crossed
fects in the case of incompressible flows also and in
absence of chemical reactions and phase transitions. W
this result we show that we can have turbulent crossed
fects in any type of flow. We have also identified the phy
cal mechanism behind this effect, namely the variation of
phenomenological coefficients with the temperature and
concentration of the mixtures.

Let us consider now the dependence of the strength of
effect on the different variables. To estimate the order
magnitude of the relevant terms we introduce the dimens
less form of the equations. Let us analyze, for instance,
crossed term in Eq.~10!, ]^T* &/]t5¹W •Bi

T¹W Nj* 1¯ , with
Bi

T5m(]k/]ni)0DT0^tuW iuW i& and m5t r@12t* 2t
*
2 ln(t*

1Re
*
2s)# @4#. Now, t r is the relaxation time of the proces

considered in this work that replaces the relaxation timetc
of the chemical reactions,t* 5t r /t0 , andt05 l 0 /u0 with l 0
the maximum scale of turbulent fluid motions andu0 the
characteristic turbulent fluid velocity in the scalel 0 . Re* is
Re*5min(Re,Pei) with Re5l0u0 /n the Reynolds number,n
the kinematic viscosity, and Pei5 l 0u0 /k i the Peclet number
Finally, we haves5(q21)/(32q) with q52p21 and p
the exponent of the spectrum of the kinetic turbulent ene
of the fluid. By scaling length, velocity, time, temperatur
and the phenomenological coefficients with the refere
valuesl 0 , u0 , l 0 /u0 , kn/agl0

3 ~with a the thermal expan-
sion coefficient andg the acceleration of the gravity!, andn
we obtain the dimensionless form of the equation:

]^Ta* &
]ta

5Re21@12t* 2t
*
2 ln~t* 1Re

*
2s!#

3¹W a•t r
a~]ka /]ni !0DaTa

0^tauW i
auW i

a&¹W aNi* 1¯ .

~13!

In this equation,a indicates that the variables are now d
mensionless~note thatt* is already dimensionless!. The
term Re21 tends to diminish the intensity of the effect fo
high Reynolds number flows. However, the rest of the ter
in the rhs of the first line of Eq.~13! ~those depending ont* )
tend to increase the intensity of the effect for largeu0 . If we
consider a problem whose geometric configuration is fix
( l 0 constant! and witht r approximately constant, the varia
tion of Re andt* is given byu0 . For high Reynolds num-
bers,u0 is very large, makingt* also very large. In these
conditions t* Re21 will be approximately constant, bu
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Re21 t
*
2 ln(t*1 Re

*
2s) will increase with the growth ofu0 .

Thus, in this particular situation, the strength of the eff
increases for high Reynolds numbers. This conclusion ag
with the results obtained for the dependence of the turbu
Dufour effect on the Reynolds number derived in Ref.@1#
~note that the ratio of increase of the effect with the Reyno
number obtained in Ref.@1# is different because of the dif
ferent approach used for the evaluation!. For other situations
we must consider the variations ofl 0 and/or t r , and the
evaluation is much more difficult. Finally, note that the pre
ence of a dependence of the intensity on ln(Re*) is typical of
turbulent crossed fluxes@2–4#.

The above considerations suggest some comments o
type of scenarios where crossed effects in incompress
flows could be relevant. These considerations show
whenl 0 andt r can be considered approximately constant
intensity of the effect grows with the Reynolds numb
Thus, very high Reynolds number flows are potential fram
works to observe the effects. However, other factors mus
taken into account. As shown in Eq.~13! ~and the equivalen
equation for the Soret effect! the strength of the effect de
pends on (]k/]ni)0 , (]k i /]T)0 , DT0, and Dni

0. When
these variables are large the intensity of the effect increa
We must use mixtures for which the variation of the ph
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nomenological coefficients withT and/orni is large. More-
over, we must consider experimental situations with la
values ofDT0 and/orDni

0. We can have large values ofDT0

in turbulent Rayleigh-Be´nard convection with large externa
gradients of temperature. On the other hand, we can ob
large values ofDni

0 by placing a source of one of the com
ponents of the mixture in the flow. Other potentially intere
ing situations occur in the proximity of wall transitions
where strong variations of temperature and concentration
observed.

Finally, we note that in the case of the incompressi
flows here considered a turbulent analog of the Onsage
lations can be obtained, as in Ref.@5# for compressible flows.
It is clear from the expressions forBi

T and BT
i that the tur-

bulent crossed coefficients are given by^tuW uW & and ^tuW iuW i&,
respectively, just as in the case of compressible flows@5#.
Then, remembering as stressed at the beginning of this
that the turbulent velocity of the gaseous admixture co
cides with that of the surrounding fluid, we have that the t
turbulent crossed coefficients are equal; a turbulent analo
the Onsager relations is also valid for incompressible flo
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